

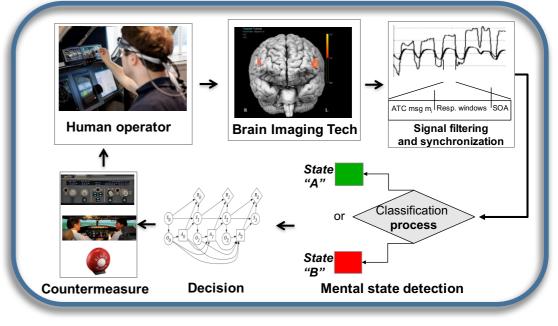
Neuro-adaptive technology for Human System Interaction

F. DEHAIS Neuroergonomics ISAE R. ROY Signal Processing ISAE

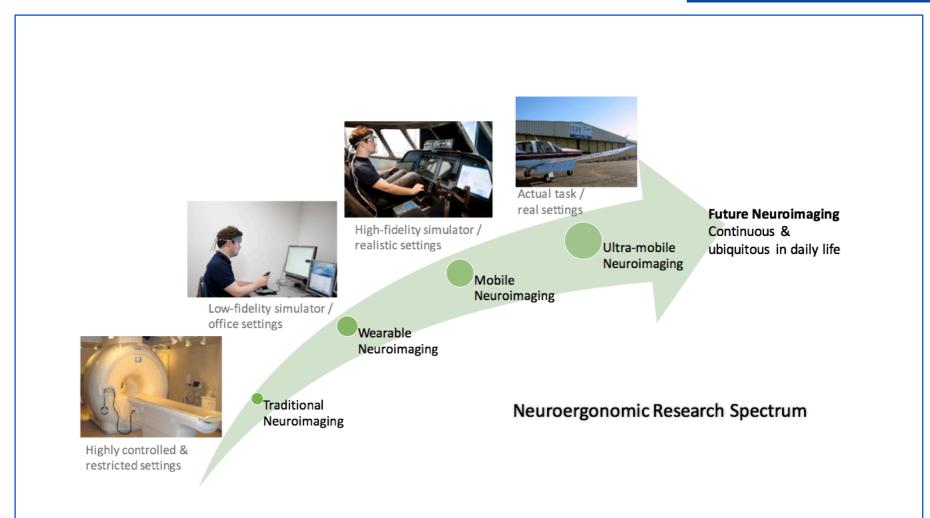
C. CHANEL

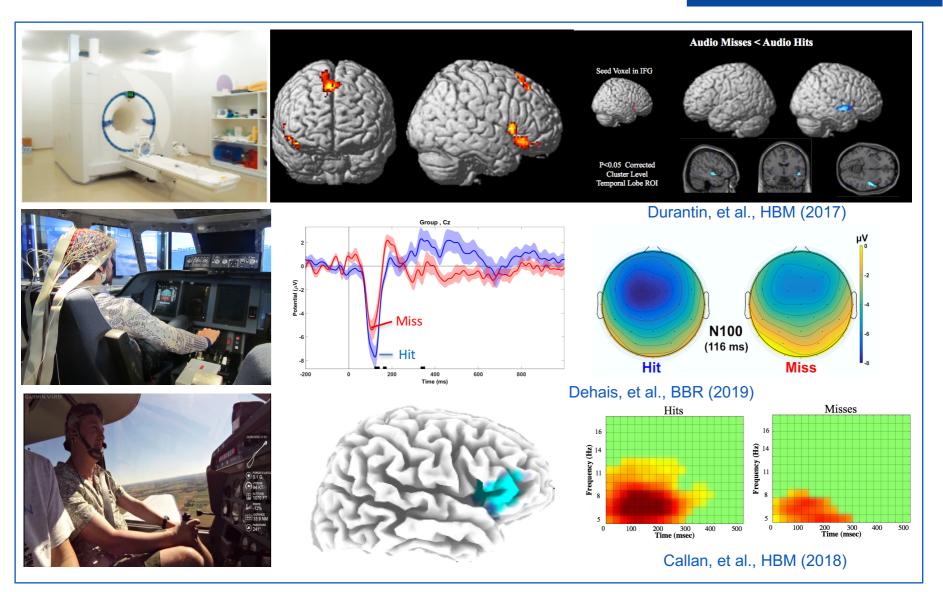
Al/Planning

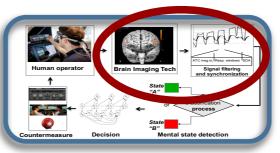
ISAE


N. DROUGARD Machine learning ISAE

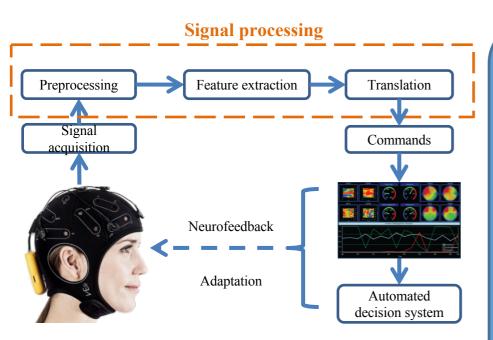
INRIA Bordeaux


Improving Human-Machine Teaming


APPROACH

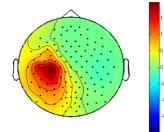


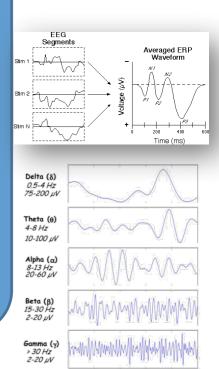
Team achievements



Passive Brain-Computer Interfaces

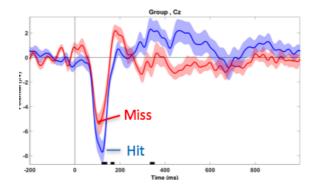
ARTIFICIAL & NATURAL INTELLIGENCE TOULOUSE INSTITUTE

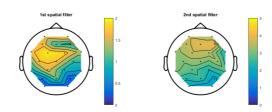

To supplement or enhance



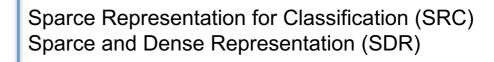
Implicit modification of the interaction based on physiological features (cerebral, or hybrid with cardiac and ocular) Small dataset and tranfer learning issues

Denoising (ASR, ICA) & signal conditioning to enhance SNR (e.g. spatial filtering)


Feature Extraction: Temporal (eventrelated potentials), spectral (power in α), connectivity metrics (corr, covar, path length, Granger, etc)

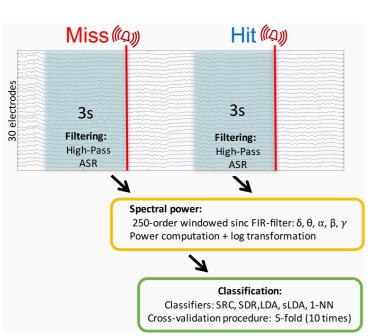


Passive Brain-Computer Interfaces: Team achievements



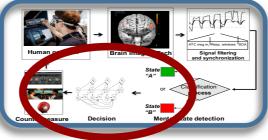
Inattentional deafness detection accuracy: 72%

Canonical Correlation Analysis Spatial Patterns


Dehais, et al., BBR (2019)

Inter-subject classification accuracy: 67	7%
---	----

Methods Features


	Delta	Theta	Alpha	Beta	Gamma	Engagement	Fusion
1-NN	59.08 ± 3.29	57.29 ± 2.85	57.38 ± 4.06	58.21 ± 2.15	59.50 ± 3.01	58.04 ± 1.76	59.60 ± 2.70
LDA	60.20 ± 4.15	59.60 ± 2.79	58.71 ± 2.25	58.67 ± 3.06	58.50 ± 3.60	62.20 ± 2.50	60.60 ± 4.00
sLDA	60.75 ± 3.64	54.38 ± 3.45	53.38 ± 3.13	53.96 ± 3.20	56.25 ± 2.56	59.25 ± 3.33	60.00 ± 3.07
SDR	61.50 ± 3.50	62.60 ± 2.80	60.50 ± 1.80	60.40 ± 1.80	58.90 ± 1.60	62.50 ± 3.07	65.40 ± 2.80
SRC	65.60 ± 4.02	64.58 ± 2.25	63.83 ± 3.37	63.96 ± 3.42	64.08 ± 3.78	63.58 ± 2.94	66.90 ± 3.10

ANITI Journées scientifiques 2019

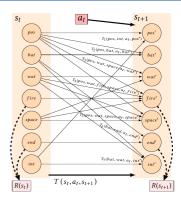
Dehais, et al., IEEE SMC (2019)

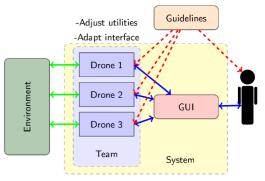
Mixed-Initiative Human-Machine Interaction

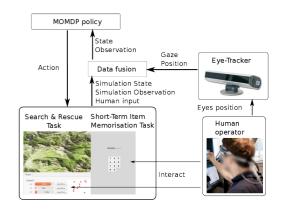
(Jiang and Arkin, 2015) have defined MI-HRI is a collaboration strategy for human-robot teams where humans and robots opportunistically seize (relinquish) initiative from (to) each other as a mission is being executed.

> Human operators are not providential agents

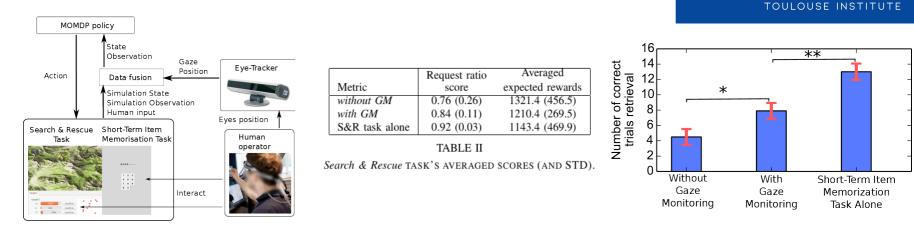
Issue : strategy computation taking into account the (non-deterministic) human operator behavior and the partial observability of her/his state


Challenges :


 \rightarrow interaction data acquisition (Charles et al., 2018)


 \rightarrow human (belief) state and system state assessment (Régis et al., 2014)

 \rightarrow sequential-decision making problem modeling, solving and evaluation (de Souza et al. 2015, Gateau et al., 2016)



Team achievements

ARTIFICIAL & NATURAL INTELLIGENCI

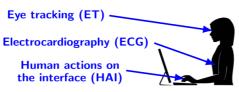
(2016) Thibault Gateau, Caroline P. Carvalho Chanel, Mai-Huy Le and Frédéric Dehais.

Considering Human's Non-Deterministic Behavior and his Availability State When Designing a Collaborative Human-Robots System In Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016)

Ulbadino de Souza, P.E. and Carvalho Chanel, C.P and Dehais, F. and Givigi, S. Towards human-robot interaction: a framing effect experiment.

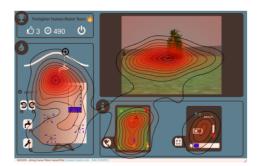
(2016) In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics.

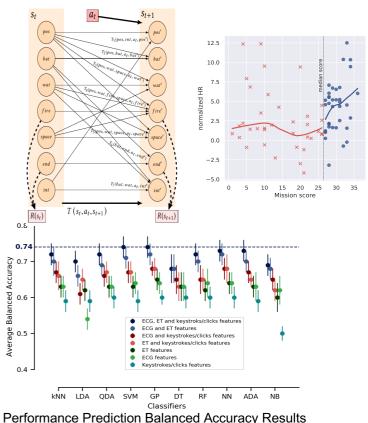
Ulbadino de Souza, P.E. and Carvalho Chanel, C.P and Dehais, F. and Givigi, S. A Game Theoretical Formulation of a Decentralized Cooperative Multi-Agent Surveillance Mission. (2016) 4th Workshop on Distributed and Multi-Agent Planning.


TOULOUSE INSTITUTE

HoRIzON: driving human-robot interaction

- \rightarrow Crowdsourcing platform robot-isae.isae.fr
- \rightarrow Lab experiments for physiological data acquisition (cardiac activity)




Robot Firefighter Mission

Charles, J. and Chanel, C.P.C and Chauffaut, C. and Chauvin, P. and Drougard, N. Human-Agent Interaction Model Learning based on Crowdsourcing. (2018) In: 6th International Conference on Human-Agent Interaction (HAI'18)

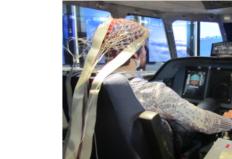
Chanel, C.P.C and Roy, R.N and Dehais, F. and Drougard, N. Towards MI-HRI: Assessment of Physiological and Behavioral Features for performance prediction (2019) Under revision.

ANITI Journées scientifiques 2019

PhD 1: Modelling the dynamics of multimodal attention

Selective attention

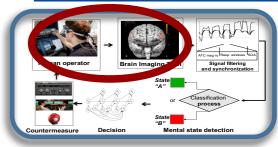
- Enhancement of Task Relevant Networks.
- Alteration in Effective Connectivity by Modulation of Neural Synchrony: Gamma (>40 Hz) Theta (4-8 Hz)
- Cross-Frequency Coupling

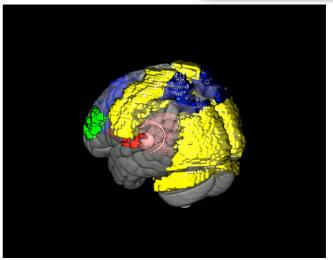

Focused attention

- Suppression of Non-Primary Task Relevant Networks.
- Increased Alpha (8-14 Hz) in Non-Primary Task Networks
- Change in Theta (4-8 Hz) and Gamma (>40Hz) band power in Primary Task Networks

Clayton et al. (2015); Buchman et al (2007, 2015)

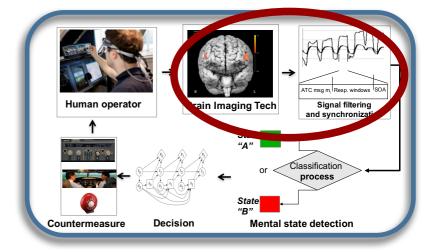
→ Understanding: inverse model-based RL


\rightarrow Online monitoring



Daniel Callan

PhD 2 + Post doc 1: Robust BCI pipeline


Benchmarking & development

- Feature extraction, signal conditioning & machine learning methods (e.g. use of Riemannian geometry)
- Transfer learning & ecological settings (e.g. adaptive techniques)
- Mental states and/or features overlap
 →online adaptive methods

Applied to active & passive BCI applications

- Applied to active & passive BCI applications
- Databases: public & our own

→ Focus on signal conditioning and classification techniques to improve online mental state estimation wrt cross-subject, cross-task, crosssetting and cross-session variability

Short stays at INIRIA Bordeaux with Dr F Lotte

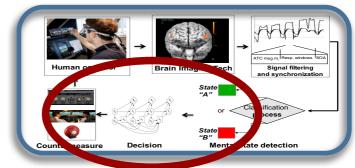
Post Doc 2: Automated Human-System Interaction model learning and planning

A NITIFICIAL & NATURAL INTELLIGENCE TOULOUSE INSTITUTE

\rightarrow Optimal model learning based on demonstrations

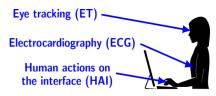
- sequential decision-making under uncertainty framework (PO)MDP
- Automated system state aggregation
 and variable selection

→ Resulting model as a compromise between:


- The precision of model parameters
- and policy optimizability

(model accuracy prevented by the curse of dimensionality)

 \rightarrow Model learning for planning approach evaluation using available datasets (HRI/HSI experiments


\rightarrow Resulting policy evaluation in ecological experiments

¹² ANITI Journées scientifiques 2019

Mixed-Initiative Interaction learning and planning

Teaching

"NEURO-IA" Master of science (140 hours) – for "ingénieur.e.s supaéro"

Start: fall 2020

4 modules:

- M1 Neuroergonomics (45h): *Neurosciences, Human Factor, HMI design .*
- M2 Brain Computer Interface (30h): Sensors, Signal processing, experimental method
- M3 Tools and methods for Neuroergonomics (40h): Machine-learning, Deterministic and Non-deterministic Planning, Multi agent systems, Games theory,
- M4 Research & Development project (25h):