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Background: Cognitive Neuroscience

 Broad questions (examples):
 Perception (Visual recognition, Speech recognition)
 Feed-forward vs. feed-back mechanisms
 Attention
 (Spiking) neural networks, neural coding

 Relevance to AI & Deep Learning!
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VanRullen & Reddy, Nat. Comm. Biol. (2019)

Variational Auto-Encoder + Generative Adversarial Network 
(VAE-GAN)

Use DL to improve neuroscience

Larsen et al, ICML (2016)
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VanRullen & Reddy, Nat. Comm. Biol. (2019)

Use DL to improve neuroscience
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ANR 2019-2022 with Leila Reddy (PI)
+ N. Asher, T. van de Cruys (IRIT)

 Compare brain activity patterns & 
DL latent spaces for: 
 Vision: Face processing 
 Language: Words, Sentences

How close are DL and biological neural networks?
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Chair objectives

 Design robust, human-like AI systems
by drawing inspiration from Neuroscience / Biology

brain-like activity: e.g. enforcing similarity w/ brain signals
brain-like architectures: feed-back loops, oscillations
brain-like cognitive functions: attention, predictive coding
brain-like complexity: sensationlanguage action
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Predictive coding
A theory of brain function in hierarchical systems: 
 each layer “explains away” activations in the preceding layer
 after few iterations, it converges on the most parsimonious interpretation
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Concrete example 1
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 Similar (in spirit) to CapsNet (Sabour, Frosst & Hinton, 2017)
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Concrete example 2
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 “Human-Semantic” regularization for ConvNets



turtle

 turtle

 rifle

Back-propagate language (or other) knowledge into ConvNets: 
 increase in robustness >> drop in accuracy

DeViSE: Deep Visual-Semantic Embedding (Frome et al, NIPS 2013)
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Neural structured 
learning [NSL]



turtle

 turtle

 rifle

Back-propagate language (or other) knowledge into ConvNets: 
 increase in robustness >> drop in accuracy

DeViSE: Deep Visual-Semantic Embedding (Frome et al, NIPS 2013)

EEG + fMRI

Concrete example 2
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Concrete example 3

 Complex-valued neural networks
Spikes + oscillations = powerful computational tools (Dynamic 
routing, Binding by synchrony, Attention, Predictive coding, …)
A firing phase can be represented by a complex value

exploration focused attention

McLelland & VanRullen, PLOS Comp Biol 2016
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Concrete example 3

 Complex-valued neural networks
Spikes + oscillations = powerful computational tools (Dynamic 
routing, Binding by synchrony, Attention, Predictive coding, …)
A firing phase can be represented by a complex value

Reichert & Serre, ICLR 2014

ANR-NSF 2020-2023 with 
Thomas Serre (Brown University)
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ANITI interactions
 T. Serre: “Reverse-engineering the brain”
 Other chairs interested in Deep Learning
 Industry partners interested in robust models
 TIdDLe = Toulouse Interdisciplinary Deep Learning Group

with Emmanuel Rachelson (ISAE)

 website: tiddle-group.github.io
mailing list (>160 members, academics + industry)
 discussion forum
 seminars, hackathons, tutorials
 joint projects, research topics, etc.
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