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Background: Cognitive Neuroscience

Broad questions (examples):
Perception (Visual recognition, Speech recognition)
Feed-forward vs. feed-back mechanisms
Attention
(Spiking) neural networks, neural coding

=> Relevance to Al & Deep Leaming!
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Use DL to improve neuroscience

Variational Auto-Encoder + Generative Adversarial Network

e (VAE-GAN)
A —{] Larsen et al, ICML (2016)
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VanRullen & Reddy, Nat. Comm. Biol. (2019)
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Use DL to improve neuroscience

S1 reconstructed from: S2 reconstructed from
shown VAE-GAN PCA shown VAE-GAN PCA

VanRullen & Reddy, Nat. Comm. Biol. (2019)
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How close are DL and biological neural networks?

ANR 2019-2022 with Leila Reddy (PI)
+ N. Asher, T. van de Cruys (IRIT)
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Discriminator (only used for training)

Compare brain activity patterns &

DL latent spaces for:
n Vision: Face processing
- Language: Words, Sentences
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Chair objectives

Design robust, human-like Al systems
by drawing inspiration from Neuroscience / Biology

=> brain-like activity: e.g. enforcing similarity w/ brain signals
=>» brain-like architectures: feed-back loops, oscillations

=> brain-like cognitive functions: attention, predictive coding
=> brain-like complexity: sensation €< » language <« » action
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Concrete example 1

Predictive coding

A theory of brain function in hierarchical systems:
each layer “explains away” activations in the preceding layer
=>» after few iterations, it converges on the most parsimonious interpretation
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=>» Similar (in spirit) to CapsNet (Sabour, Frosst & Hinton, 2017)
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Concrete example 1

Predictive coding

A theory of brain function in hierarchical systems:
each layer “explains away” activations in the preceding layer
=>» after few iterations, it converges on the most parsimonious interpretation
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Concrete example 1

Predictive coding

A theory of brain function in hierarchical systems:
each layer “explains away” activations in the preceding layer
=>» after few iterations, it converges on the most parsimonious interpretation
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Concrete example 1

Predictive coding

A theory of brain function in hierarchical systems:
each layer “explains away” activations in the preceding layer
=>» after few iterations, it converges on the most parsimonious interpretation
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Concrete example 2

“Human-Semantic” regularization for ConvNets
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Concrete example 2

“Human-Semantic” regularization for ConvNets
Back-propagate language (or other) knowledge into ConvNets:

=» increase in robustness >> drop in accuracy

Neural structured
learning [NSL]

é comnstruments
le :

super :
ol born fImYersiony, one

turtle - lis
g E' st best wta‘ritten

san john

: list bugs
french@gpss g fﬂm'%'}ln@m name.
roman ' C
united':l I:Ia& found  ing block

Okinawgy Ifornig, |:L|_F.E..E¢tl’['-ér”erpeop L 25& social

british - ‘
plant first high interest

india

fifa side security
tea @ house madglﬁmrt get

! police
goal rldE%w VP naigst .
uy®™° @ pifle

businassstatesedom

seg engine

War faundation
officer

DeVISE: Deep Visual-Semantic Embedding (Frome et al, NIPS 2013)

Deep learning with semantic, cognitive and biological constraints



Concrete example 2

“Human-Semantic” regularization for ConvNets
Back-propagate language (or other) knowledge into ConvNets:

=» increase in robustness >> drop in accuracy
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DeVISE: Deep Visual-Semantic Embedding (Frome et al, NIPS 2013)
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Concrete example 2

“Human-Semantic” regularization for ConvNets
Back-propagate language (or other) knowledge into ConvNets:

=>» increase in robustness >> drop in accuracy

UNSUPERVISED SUPERVISED

LAYER | LAYER 1l eoe LAYER N DENSE

oA
/
y P.C.
W_: M_f M Th

DEEP CONVOLUTIONAL NETWORK

W,

EMBEDDING

Deep learning with semantic, cognitive and biological constraints



Concrete example 3

Complex-valued neural networks

Spikes + oscillations = powerful computational tools (Dynamic
routing, Binding by synchrony, Attention, Predictive coding, ...)

=> A firing phase can be represented by a complex value
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McLelland & VanRullen, PLOS Comp Biol 2016
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Concrete example 3

Complex-valued neural networks

Spikes + oscillations = powerful computational tools (Dynamic
routing, Binding by synchrony, Attention, Predictive coding, ...)

=> A firing phase can be represented by a complex value
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Reichert & Serre, ICLR 2014
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ANITI interactions

T. Serre: “Reverse-engineering the brain”

Other chairs interested in Deep Learning

Industry partners interested in robust models

TldDLe = Toulouse Interdisciplinary Deep Learning Group

with Emmanuel Rachelson (ISAE)
=> website: tiddle-group.github.io
=> mailing list (>160 members, academics + industry)
=>» discussion forum
=> seminars, hackathons, tutorials
=> joint projects, research topics, etc.
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