Design using intuition and logic

Optimisation, Graphical Models, Protein Design

T. Schiex, INRA MIAT

S. de Givry, G. Katsirelos, D. Simoncini (IRIT), S. Barbe (TBI/INSA)

ANITI September 2019

SAT

- Canonical NP-complete problem (Cook theorem)
- A set X of Boolean variables
- A set C of clauses (disjunction of litterals: a variable or its negation)
- \exists ? a labelling of X such that all C is true

SAT solvers find a solution or provide a proof that none exists

- Major impact on digital circuit verification (PSPACE-complete),...
- Theorem proving (recent proof on Pythagorean Triangles ${ }^{9,10}$)
- Millions of variables, 10 s of millions of clauses

A lot of empirical work

- Lots of real problems (random problems are different)
- Competitions with Open Source software

Main elected ingredients

- Massive problem reformulation using local inference (Unit Propagation, fast data-structures)
- If insufficient, make assumptions (tree search)
- Make non naive assumptions (adaptative variable ordering, learned during search)
- Conflict analysis (clause learning following inconsistent assumptions)
- Restarts,...

Constraint network (X, C)

Joint feasibility distribution

- a sequence X of variables x_{i}, finite domain D_{i}
- a set C of constraints
- $c_{S} \in C$ involves variables in $S \subseteq X$
boolean functions table, clause,...

$$
\prod_{i \in S} D_{i} \rightarrow\{t, f\}
$$

- Joint boolean function $F(X)=\bigwedge c_{S}$

Applications

Scheduling, rostering, planning, configuration...

Boolean functions

SAT and CSP

Excellent to describe, analyze, design perfectly known complex systems

Boolean functions

SAT and CSP

Excellent to describe, analyze, design perfectly known complex systems
Biology/Life
Full of imperfectly known complex systems

Cost function network (X, W) Joint cost/feasibility distribution ${ }^{3,15}$

- a sequence X of variables x_{i}, finite domain D_{i}
- a set W of cost functions w_{\varnothing} (Ib)
- $w_{S} \in W$
table/tensor, clause, simple function...

$$
\prod_{i \in S} D_{i} \rightarrow\{0, \ldots, k\}
$$

- Joint cost function $W(X)=\sum w_{S}$
(bounded sum)
Central problems: WCSP (Partial Weighted MaxSAT)
- solution: cost less than k
- optimal: w.r.t. the joint cost $W(X)$ decision NP-complete
- constraint: function with costs in $\{0, k\}$ CP is $k=1$

GMs define

- a joint function of many variables
- by combining (using a dedicated operator)
- a set of simpler functions (scopes, langage)

What function, what query?

- feasibility: prop. logic, constraint nets
(CSP: \vee, \wedge)
- priorities: possibilistic/fuzzy CSP (max, min)
- cost, energy: Cost Function Networks
- probability: Markov Random Field, Bayes nets (Max. a posteriori: \max , \times) (Marginal:,$+ \times$)

Extended most ingredients from SAT/CSP solvers

- Incremental reformulation techniques (tighter lower bound) ${ }^{4}$
- Making assumptions (Hybrid Branch and bound, lb. w $\boldsymbol{w}_{\varnothing}$)
- Non naive variable ordering (adaptative)
- Graph decomposition (treewidth combined with all the above)
- Dominance analysis (Dead End Elimination)
- Still missing: conflict analysis

Open source Toulbar2 solver

- Won several competitions (on approximate MAP/MRF solving)
- "ToulBar2 variants were superior to CPLEX variants in all our tests" ${ }^{7}$

Applications

- Life sciences: protein design, genotyping data diagnosis and repair, RNA gene finding, crop allocation
- NLP, music composition (MLN), Data mining, timetabling, planning, POMDP, universal Hashing based counting, probabilistic inference, Inductive LP, image processing...
- see toulbar2 web site and GitHub

Most active molecules of life

Sequence of amino acids, 20 natural ones each defined by a specific flexible side-chain

Transporter, binder/regulator, motor, catalyst... Hemoglobine, TAL effector, ATPase, dehydrogenases...

Most active molecules of life

Sequence of amino acids, 20 natural ones each defined by a specific flexible side-chain

Inverse folding

Function

Transporter, binder/regulator, motor, catalyst... Hemoglobine, TAL effector, ATPase, dehydrogenases...

Why is it worth designing new proteins?

Eco-friendly chemical/structural nano-agents

- Biodegradable (have been mass produced for billions of year)
- "Easy" to produce (transformed bacteria)
- Useful for health, green chemistry ${ }^{14}$ (biœnergies), nanotechnologies ${ }^{17}$...

Energy optimisation side - NP-complete

- efficient exact energy optimisation for protein design (far faster than ILP, compete with simulated or D-Wave quantum annealing ${ }^{1116}$)
- specific extensions for Protein Design: counting, multi-state (flexibility)

Actual protein designs

- A self assembling hyper-stable protein ${ }^{17}$ (with A. Vœt, KU Leuven)
- New light-weight antibody with nice properties (with A. Olichon, Toulouse Cancer Research Center)

Logical and probabilistic propositional reasoning

- satisfy logical properties/constraints exactly
- optimise a criteria that can be probabilistic (or not)
- which can be learned from data (likelihood/convex optim.).

Protein Design

- desired design properties (logical information),
- physical knowledge (represented as a decomposable energy function)
- probabilistic information learned from data (known protein sequences)

人-joint project: guaranteed relational probabilistic/logic reasoning Build a rigorous platform (Markov Logic Networks, ${ }^{13}$ Soft Probabilistic Logic, ${ }^{2}$ ProbLog ${ }^{5}$)

Topics

- stronger lower bounds: convex/SDP relaxations. $\boldsymbol{\Lambda}$ - PhD .
- learn when to use them, better heuristics (Multi-Armed Bandits, NN).
- extend conflict analysis to CFNs (through duality). $\boldsymbol{\Lambda}$ - PhD
- learn CFNs (available for numerical information)
- parallelization, CPD application, PhDs: \-PostDoc
- Consider multiple protein geometries: Quantified WCSP (bi-level optimisation). ANR SPaceHex.

Reasoning with rules and data

- Useful for other chairs? (argumentation, NLP, ...)
- Renault and configuration: learning from history (fairness/biases)
- Learning optimally sparse and proving properties of ML models ${ }^{8,12}$
- DL for CPD (adversarial, transformer).

Continuous optimisation

- Fast incremental convex lower bounds
- Continuous movements: non convex hybrid (discrete/continuous) optimisation problem [6]
- Tight link with robotics (side-chains are robotic arms, J. Cortes/LAAS/CNRS. PhD).

References I

[1] David Allouche et al. "Computational protein design as an optimization problem". In: Artificial Intelligence 212 (2014), pp. 59-79.
[2] Stephen H Bach et al. "Hinge-loss markov random fields and probabilistic soft logic". In: arXiv preprint arXiv:1505.04406, JMLR (2015).
[3] M. Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174 (2010), pp. 449-478.
[4] Martin C Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174.7 (2010), pp. 449-478.
[5] Luc De Rædt, Angelika Kimmig, and Hannu Toivonen. "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.". In: IJCAI. Vol. 7. Hyderabad. 2007, pp. 2462-2467.
[6] Abram L Friesen and Pedro Domingos. "Recursive decomposition for nonconvex optimization". In: Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.
[7] Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[8] Guy Katz et al. "Reluplex: An efficient SMT solver for verifying deep neural networks". In: International Conference on Computer Aided Verification. Springer. 2017, pp. 97-117.
[9] Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

References II

[10] Evelyn Lamb. "Maths proof smashes size record: supercomputer produces a 200-terabyte proof-but is it really mathematics?" In: Nature 534.7605 (2016), pp. 17-19.
[11] Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: (2019).
[12] Nina Narodytska et al. "Verifying properties of binarized deep neural networks". In: Proc. of AAA|'18. 2018.
[13] Matthew Richardson and Pedro Domingos. "Markov logic networks". In: Machine learning 62.1-2 (2006), pp. 107-136.
[14] Daniela Röthlisberger et al. "Kemp elimination catalysts by computational enzyme design". In: Nature 453.7192 (2008), p. 190.
[15] T. Schiex, H. Fargier, and G. Verfaillie. "Valued Constraint Satisfaction Problems: hard and easy problems". In: Proc. of the $14^{\text {th }}$ IJCAl. Montréal, Canada, Aug. 1995, pp. 631-637.
[16] David Simoncini et al. "Guaranteed discrete energy optimization on large protein design problems". In: Journal of chemical theory and computation 11.12 (2015), pp. 5980-5989.
[17] Arnout RD Voet et al. "Computational design of a self-assembling symmetrical β-propeller protein". In: Proceedings of the National Academy of Sciences 111.42 (2014), pp. 15102-15107.

