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Context: progress in NP-complete Problem Solving

SAT
Canonical NP-complete problem (Cook theorem)
A set X of Boolean variables
A set C of clauses (disjunction of litterals: a variable or its negation)
∃? a labelling of X such that all C is true

SAT solvers find a solution or provide a proof that none exists

Major impact on digital circuit verification (PSPACE-complete),…
Theorem proving (recent proof on Pythagorean Triangles9,10)
Millions of variables, 10s of millions of clauses
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Main ingredients

A lot of empirical work

Lots of real problems (random problems are different)
Competitions with Open Source software

Main elected ingredients

Massive problem reformulation using local inference (Unit
Propagation, fast data-structures)
If insufficient, make assumptions (tree search)
Make non naive assumptions (adaptative variable ordering, learned
during search)
Conflict analysis (clause learning following inconsistent assumptions)
Restarts,…
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Constraint Networks

Constraint network (X , C) Joint feasibility distribution
a sequence X of variables xi , finite domain Di
a set C of constraints boolean functions
cS ∈ C involves variables in S ⊆ X table, clause,…∏

i∈S
Di → {t, f}

Joint boolean function F (X ) =
∧
cS

Applications
Scheduling, rostering, planning, configuration…
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Boolean functions

SAT and CSP
Excellent to describe, analyze, design perfectly known complex systems

Biology/Life
Full of imperfectly known complex systems
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From boolean to numerical functions

Cost function network (X ,W ) Joint cost/feasibility distribution3,15

a sequence X of variables xi , finite domain Di
a set W of cost functions w∅ (lb)
wS ∈ W table/tensor, clause, simple function…∏

i∈S
Di → {0, . . . , k}

Joint cost function W (X ) =
∑
wS (bounded sum)

Central problems: WCSP (Partial Weighted MaxSAT)
solution: cost less than k
optimal: w.r.t. the joint cost W (X ) decision NP-complete
constraint: function with costs in {0, k} CP is k = 1
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Graphical models (originally a stat/ML terminology)

GMs define
a joint function of many variables
by combining (using a dedicated operator)
a set of simpler functions (scopes, langage)

What function, what query?

feasibility: prop. logic, constraint nets (CSP: ∨,∧)
priorities: possibilistic/fuzzy CSP (max, min)
cost, energy: Cost Function Networks (WCSP: min,+)

probability: Markov Random Field, Bayes nets (Max. a posteriori:
max,×) (Marginal: +,×)
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Results…

Extended most ingredients from SAT/CSP solvers

Incremental reformulation techniques (tighter lower bound)4

Making assumptions (Hybrid Branch and bound, lb. w∅)
Non naive variable ordering (adaptative)
Graph decomposition (treewidth combined with all the above)
Dominance analysis (Dead End Elimination)
Still missing: conflict analysis

Open source Toulbar2 solver

Won several competitions (on approximate MAP/MRF solving)
“ToulBar2 variants were superior to CPLEX variants in all our tests”7
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Applications

Life sciences: protein design, genotyping data diagnosis and repair,
RNA gene finding, crop allocation
NLP, music composition (MLN), Data mining, timetabling, planning,
POMDP, universal Hashing based counting, probabilistic inference,
Inductive LP, image processing…
see toulbar2 web site and GitHub
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http://www.inra.fr/mia/T/toulbar2
https://github.com/toulbar2/toulbar2


Proteins

Most active molecules of life
Sequence of amino acids, 20 natural ones each defined by a specific
flexible side-chain

Folding

→ → Function

Transporter, binder/regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…
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Protein Design

Most active molecules of life
Sequence of amino acids, 20 natural ones each defined by a specific
flexible side-chain

Inverse folding

Function → →

Transporter, binder/regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…
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Why is it worth designing new proteins?

Eco-friendly chemical/structural nano-agents

Biodegradable (have been mass produced for billions of year)
“Easy” to produce (transformed bacteria)
Useful for health, green chemistry14 (biœnergies),
nanotechnologies17…

20n sequences! experimentally intractable
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Results

Energy optimisation side - NP-complete

efficient exact energy optimisation for protein design (far faster than
ILP,1 compete with simulated or D-Wave quantum annealing11,16)
specific extensions for Protein Design: counting, multi-state
(flexibility)

Actual protein designs

A self assembling hyper-stable protein17 (with A. Vœt, KU Leuven)
New light-weight antibody with nice properties (with A. Olichon,
Toulouse Cancer Research Center)
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“Hybrid AI” and design

Logical and probabilistic propositional reasoning
satisfy logical properties/constraints exactly
optimise a criteria that can be probabilistic (or not)
which can be learned from data (likelihood/convex optim.).

Protein Design

desired design properties (logical information),
physical knowledge (represented as a decomposable energy function)
probabilistic information learned from data (known protein
sequences)

-joint project: guaranteed relational probabilistic/logic reasoning

Build a rigorous platform (Markov Logic Networks,13 Soft Probabilistic
Logic,2 ProbLog5)
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Topics for ANITI

Topics

stronger lower bounds: convex/SDP relaxations. -PhD.
learn when to use them, better heuristics (Multi-Armed Bandits, NN).
extend conflict analysis to CFNs (through duality). -PhD
learn CFNs (available for numerical information)
parallelization, CPD application, PhDs : -PostDoc
Consider multiple protein geometries: Quantified WCSP (bi-level
optimisation). ANR SPaceHex.
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ANITI links

Reasoning with rules and data

Useful for other chairs? (argumentation, NLP, …)
Renault and configuration: learning from history (fairness/biases)
Learning optimally sparse and proving properties of ML models8,12

DL for CPD (adversarial, transformer).

Continuous optimisation
Fast incremental convex lower bounds
Continuous movements: non convex hybrid (discrete/continuous)
optimisation problem [6]
Tight link with robotics (side-chains are robotic arms, J.
Cortes/LAAS/CNRS. PhD).
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