A NITI

Data-driven approximate Bayesian computation Application to fusion-based inference from heterogeneous remote sensing data

Nicolas Dobigeon

September 9-10, 2019

Chair members

Nicolas Dobigeon Professor, IRIT

Cédric Févotte CNRS Researcher, IRIT

Thomas Oberlin Ass. Professor, ISAE

Mathieu Fauvel INRA Researcher, CESBIO

Jordi Inglada CNES Researcher, CESBIO

Remote sensing for Earth science

• Numerous tasks to be conducted automatically, without resorting to thorough and fastidious on-ground surveys.

- To provide crucial information, e.g., relative to macroscopic and phenological indices.
- Opportunity: multi-modality and/or multi-sensor acquisition.

State-of-the-art

Data exploitation/analysis generally relies on specific models/methods dedicated to each modality.

Objective

- · Joint processing of multi-* data.
- Setting up a framework overcoming a crude and marginal description of a single measurement.
- · Learning a (joint) latent space where to infer the parameters of interest.
- Bottleneck: no straightforward physical model able to offer a joint description of heterogeneous measurements.

Input

- Two or more multitemporal images.
- Same geographical spot (scene).

Output

Change map.

Favorable scenario

Figure: Landsat 8 04/15/2015 (PAN - 15m)

Figure: Landsat 8 09/22/2015 (PAN - 15m)

- Same modality.
- Identical resolutions.

Favorable scenario

Figure: Landsat 8 09/22/2015 (PAN - 15m)

- Same modality.
- Identical resolutions.

Comparison of homologous pixels!

Same modality CD!

Emergency situations:

natural disasters, on-demand missions, defense & security

Landsat 8 04/15/2015 (MS - 30m)

Landsat 8 09/22/2015 (PAN - 15m)

Emergency situations:

natural disasters, on-demand missions, defense & security

Landsat 8 04/15/2015 (MS - 30m)

Landsat 8 09/22/2015 (PAN - 15m)

Need:

Multimodal CD.

Same modality and different resolutions

Landsat 8 04/15/2015 (MS - 30m)

Landsat 8 09/22/2015 (PAN - 15m)

Archetypal example: change detection (CD) Multimodal CD

Same modality and different resolutions

Landsat 8 04/15/2015 (MS - 30m)

Landsat 8 09/22/2015 (PAN - 15m)

Not so unfavorable

Assume there is no change. Then it exists a *fused* image X related to the observed images Y_{LR} and Y_{YR} through explicit physical models

 $\begin{array}{ll} \textbf{Y}_{LR} = \mathcal{M}_1(\textbf{X}) & (i.e., \, \text{spatial degradation}) \\ \textbf{Y}_{HR} = \mathcal{M}_2(\textbf{X}) & (i.e., \, \text{spectral degradation}) \end{array}$

where X lies on the latent space of high spatial & spectral resolution images.

 \rightarrow suggests a 3-step CD framework.

Archetypal example: change detection (CD) Same modality and different resolutions: 3-step procedure

- 1. (Bayesian) fusion: estimating $\hat{\mathbf{X}}$ from \mathbf{Y}_{LR} and \mathbf{Y}_{HR} $\hat{\mathbf{X}} = \operatorname{argmin}_{\mathbf{X}} \mathcal{D}_1(\mathbf{Y}_{LR}|\mathcal{M}_1(\mathbf{X})) + \mathcal{D}_2(\mathbf{Y}_{HR}|\mathcal{M}_2(\mathbf{X})) + \lambda \mathcal{P}(\mathbf{X})$
 - → exploits the physical models (likelihood/data-fitting terms)
- 2. Prediction: reconstructing $\hat{\boldsymbol{Y}}_{\text{LR}}$ and $\hat{\boldsymbol{Y}}_{\text{HR}}$ from $\hat{\boldsymbol{X}}$

$$\hat{\mathbf{Y}}_{LR} = \mathcal{M}_1(\hat{\mathbf{X}}) \\ \hat{\mathbf{Y}}_{HR} = \mathcal{M}_2(\hat{\mathbf{X}})$$

- $\rightarrow\,$ again, exploits the physical models (direct models)
- 3. Decision: deriving 2 change maps \hat{D}_{LR} and \hat{D}_{HR}

$$\begin{split} \hat{\boldsymbol{D}}_{LR} \leftarrow \text{compare} \left\{ \boldsymbol{Y}_{LR}, \hat{\boldsymbol{Y}}_{LR} \right\} \\ \hat{\boldsymbol{D}}_{LR} \leftarrow \text{compare} \left\{ \boldsymbol{Y}_{HR}, \hat{\boldsymbol{Y}}_{HR} \right\} \end{split}$$

Same modality and different resolutions

Landsat 8 04/15/2015 (MS - 30m)

Landsat 8 09/22/2015 (PAN - 15m)

Same modality and different resolutions

Landsat 8 04/15/2015 (MS - 30m)

Landsat 8 09/22/2015 (PAN - 15m)

Different modalities and different resolutions

Sentinel 1 04/12/2016 (SAR - 10m)

Landsat 8 09/22/2015 (PAN - 15m)

Different modality and different resolutions

A NITI ARTIFICIAL E NATURAL INTELLIGENCE TOULOUSE INSTITUTE

- **1.** (Bayesian) fusion: estimating $\hat{\mathbf{X}}$ from \mathbf{Y}_{LR} and \mathbf{Y}_{HR}
 - $\hat{\boldsymbol{X}} = \operatorname{argmin}_{\boldsymbol{X}} \mathcal{D}_1\left(\boldsymbol{Y}_{LR} | \mathcal{M}_1(\boldsymbol{X})\right) + \mathcal{D}_2\left(\boldsymbol{Y}_{HR} | \mathcal{M}_2(\boldsymbol{X})\right) + \lambda \mathcal{P}(\boldsymbol{X})$
 - \rightarrow exploits the physical models (likelihood/data-fitting terms)
- **2.** <u>Prediction</u>: reconstructing $\hat{\mathbf{Y}}_{LR}$ and $\hat{\mathbf{Y}}_{HR}$ from $\hat{\mathbf{X}}$

- $\rightarrow\,$ again, exploits the physical models (direct models)
- 3. Decision: deriving 2 change maps \hat{D}_{LR} and \hat{D}_{HR}

$$\begin{split} \hat{\boldsymbol{D}}_{LR} \leftarrow \text{compare} \left\{ \boldsymbol{Y}_{LR}, \hat{\boldsymbol{Y}}_{LR} \right\} \\ \hat{\boldsymbol{D}}_{LR} \leftarrow \text{compare} \left\{ \boldsymbol{Y}_{HR}, \hat{\boldsymbol{Y}}_{HR} \right\} \end{split}$$

Archetypal example: change detection (CD) Different modality and different resolutions

- **1.** (Bayesian) fusion: estimating $\hat{\mathbf{X}}$ from \mathbf{Y}_{LR} and \mathbf{Y}_{HR}
 - $\hat{\boldsymbol{X}} = \operatorname{argmin}_{\boldsymbol{X}} \mathcal{D}_1\left(\boldsymbol{Y}_{LR} | \mathcal{M}_1(\boldsymbol{X})\right) + \mathcal{D}_2\left(\boldsymbol{Y}_{HR} | \mathcal{M}_2(\boldsymbol{X})\right) + \lambda \mathcal{P}(\boldsymbol{X})$
 - \rightarrow exploits the physical models (likelihood/data-fitting terms)
- **2.** <u>Prediction</u>: reconstructing $\hat{\mathbf{Y}}_{LR}$ and $\hat{\mathbf{Y}}_{HR}$ from $\hat{\mathbf{X}}$

- \rightarrow again, exploits the physical models (direct models)
- 3. Decision: deriving 2 change maps \hat{D}_{LR} and \hat{D}_{HR}

$$\begin{split} \hat{\boldsymbol{D}}_{LR} \leftarrow \text{compare} \left\{ \boldsymbol{Y}_{LR}, \hat{\boldsymbol{Y}}_{LR} \right\} \\ \hat{\boldsymbol{D}}_{LR} \leftarrow \text{compare} \left\{ \boldsymbol{Y}_{HR}, \hat{\boldsymbol{Y}}_{HR} \right\} \end{split}$$

Summary

Challenges

- · data heterogeneity (multi-sensor/modality/scale/temporal)
- incomplete physical models
- large-scale inference problems

Tools and methods

- Bayesian framework
 - \rightarrow prior knowledge
- Monte Carlo sampling
 - \rightarrow point estimation (Bayesian estimators)
 - \rightarrow full description of the posterior (credibility intervals)

Opportunities

- · approximate Bayesian computation (e.g., likelihood-free methods)
 - \rightarrow control of the approximation
- deep generative models
 - \rightarrow data-based description of the latent space

A NITI

Data-driven approximate Bayesian computation Application to fusion-based inference from heterogeneous remote sensing data

Nicolas Dobigeon

September 9-10, 2019

