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The process of identifying or determining the nature and root cause of a
failure, problem, or disease from the symptoms resulting from selected

measurements, checks or tests.
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Objectives

Increased safety

» Ability to avoid catastrophic or critical events for installations, stakeholders, and
the environment

Increased reliability
* Ability to perform a function under given conditions for a given period of time

Increased availability
 Ability to perform a function at a given time under given conditions
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Diagnosis

Detect inconsistencies w.r.t. a reference
Detect anomalies/faults, specific situations
Identify root causes

Estimate the internal state of a system

Identify and recommend
Determine responsabilities
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Logical theory
Uses a model obtained from COMPS = {A1, A2, M1, M2, M3}

SD = {ADD(x) A —AB(x) = Output(x) = Input1(x) + Input2(x),
knowledge MULT(x) A —AB(x) = Output(x) = Input(x) X Input2(x),
ADD(A1), ADD(A2), MULT(M1), MULT(M2), MULT(M3),
Output(M1) = Input1 (A1), Output(M2) = Input2(A1), .....
OBS = {Input1(M1) = 2, Input2(M1) = 3, Input1(M2) = 2, Input2(
Input1 (M3) = 3, Input2(M3) = 2, Output(A1) = 10, Output(s
Structural analysis R :
- ) » A A i 6 - P - 10
Estimation theory - i . ¢
Parity space theory e\ A
r(t,p) = flx(t, p), ul(t), p). O e 0 0 g . ‘ . : :
y(t,p) = hix(t, p), p), YA
xr(to, p) = o € Ay, F. N F

peP Clp, ty=t=T, . .
DES diagnosis theory
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Signals (time series)
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[ Hard constraints ] Max SAT query [ Soft constraints ]

Estimation all possible Estimation

generation estimations selection

) preferred
observations ) )
estimation

actions

Possible inconsistency

Select only one estimation between observation
* Conditional selection strategy .
and previous

* Optimistic / conservative ’ .
« Depends on previous estimated state + observation estimations =2

* E.g. previous symptom occurrences blocking paths

A trackable system
accepts a non
blocking estimator

Short explanations Incremental

" Avoid surprise (no backtrack) Handle intermittent phenomena



Coupling Diagnosis and Planning for active
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ThaIeSAI palcg Estimation of the system'’s state
un-line on-li Mission plan
observations Q —— A - : n-line :
g planning/replanning

Solution : act on the system to disambiguate diagnoses
- Active Diagnosis

Sensors

Problem : lack of observations

Models | Diagnosis B
Behavioural . ::Znner ) gbje; tiv.es/ l\ll\lli(s)scigln . p\a
1 [ onsiraints Q
Active W&\
Diagnoser . P\ \ﬂ%
Pifns diagnost \eam
Diagnoses 3
Actions Controll Plans| Mission
i Planner OBCP (on-board
DES model control
procedure)

e,,e;,,a; ,a,: observable (observations or ac¢

f,, f3: not observable fault events




Dynamic clustering and automatic learning
of discrete event models
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Two stages clustering Probability of the
transition
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Figure 21: Concept Drift toy example




Project of the chair

Highlight and understand the correspondences that may exist between
MBD and DBD techniques, in particular for feature generation and
diagnosability analysis

Integrate knowledge based models and learning

Learn diagnosis models : abstract up data configurations and map them
to symbolic or analytical models suitable for diagnosis reasoning

14
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Integration of knowledge based models and learned models: heterogeneous
and non structured data
Diagnosability analysis

* Diagnosability checks: situation signature learning

 Joint analysis based on structural models and data

Heterogeneous feature identification (selection and/or generation) in evolving
environments
* How and when ?

Explanations related to diagnosis
* not only what but why and how

— Possible post doc topics
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Possible interactions with other chairs

Joao Marques Silva : HYBRID SUBSYMBOLIC - SYMB.
Leila Amgoud: HYBRID-ARGUMENT

Jean-Michel Loubés: FAIR/ROBUST ML
Hélene Fargier: INDUSTRIAL DESIGN with UNCERTAINTY and PREFERENCES
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