A NITI ARTIFICIAL & NATURAL INTELLIGENCE TOULOUSE INSTITUTE

Knowledge Compilation

Helene Fargier

September 9-10 2019

AL.

 $\mathcal{A}I$

Members

Helene Fargier (CNRS/IRIT)

Romain Guillaume (UT2J/IRIT)

Jerome Mengin (UPS/IRIT)

Cedric Pralet (ONERA-CERT)

An introductory example

- A product configuration problem: designing a T-shirt
- Parameters:
 - ▶ Picture Men in Black (MiB) or Save the Whales (StW)
 - Color blue, red, black
 - Size S,M,L
 - Sleeves with or without
- Rules:
 - the MiB T-shirts must be black
 - the StW cannot be printed on size S
 - Size L T-shirts have sleeves
- The options proposed by the machine must be consistent with the rules

Formalizing the problem

Formalizing the problem

Interactive resolution of the CSP:

- The user selects the next variable
- ► The machine proposes values which guarantee the consistency at the next step (Color = blue ⇒ size L,M)
- The user selects a value
- The second step is NP hard ... but the user cannot wait too long after each action

Compile!

The CSP is static, known in advance Compile (off line !) the CSP into a more efficient data structure (here, a decision diagram / deterministic automaton)

The detection of the globaly consistent values is linear in the size of the automaton

Knowledge compilation consists in pre-processing some pieces of the available information in order to improve the computational efficiency (especially, the time complexity) of *some* tasks.

Some domains of application: configuration, diagnosis, reasoning, planning

Which Target Language ?

A compilation map (MDDs)

Results about queries and transformations; $\sqrt{}$ means "satisfies" (polytime algo), \bullet means "does not satisfy", and \circ means "does not satisfy, unless P = NP". Brackets [·] denote a conjecture.

	S	٨	MC	CE	Σ	EQ	SE	×₩	č	ст	ME
CSP	0	0		0	0	0	0	0	0	0	0
Horn CSP			V		\checkmark					0	\checkmark
dOMDD<	\checkmark				\checkmark			\checkmark			
OMDD<	V	0	V		0	0	0	↓ √		0	v
OMDD	\sim	0	V		0	0	0	, √		0	
dOMDD	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0	\checkmark		√	\checkmark
AND/OR tree	\checkmark	0	\checkmark	\checkmark	0	0	0		\checkmark	0	\checkmark
			_	0	_	z	υ	BC	U	BC	U
	8	Η	0 L	SF		SE	>	>	<	<	Г
CSP	\checkmark	0	0		0	$\overline{}$?
Horn CSP	\bigvee	?			0	0		i i	i	İ	!
OMDD<		\checkmark	I V		0	0			0	\checkmark	0
dOMDD<	\checkmark	•	•	•	•	•	•		•		\checkmark
OMDD	\checkmark	\checkmark		\checkmark	0	0	[0]	[0]	0	0	0
dOMDD	\bigvee	•	•	•	•	•	•	0	•	0	\checkmark
AND/OR tree	\checkmark	?	•	•	0	0	•	0	•	0	•

- Top-down compilers, bottom-up compilers
- Algos for the exploitation of the compiled form
- ► Random benchs (bof) → structured / real life benchs (e.g. Renault's configuration problems, product lines,)

Beyond the Boolean KC map

State of the art in KC:

- mainly boolean languages (Boolⁿ \mapsto Bool),
- reasonning-oriented KC maps
- off line compilers

Extend KC to

- preferences and/or uncertainties (Boolⁿ \mapsto $L \subseteq \mathbb{R}$)
- non boolean languages (e.g. temporal CSPs, scheduling problems)
- decision and optimization requests
- fine grain complexity, FTP
- learning tasks: sample complexity, VC dimension, on-the-fly compilation.

Develop compilation models and algorithms for the on line optimization of problems dealing with preferences/uncertainties, be the information quantitative (e.g. GAI nets, Bayesian nets, temporal CSPs) or qualitative (e.g. CP nets, logical approaches, point and interval algebra).

Research lines for the KC@ANITI Chair:

- Approximate compilation
- ► Compilation for involving numerical variables e.g. temporal problems → Heterogeneous KC maps
- Learning requests (sample complexity, VC dimension)
- Case studies

Helene Fargier (CNRS, PI): interested in extending the KnC approach to broader areas (e.g. preference,uncertainties, continuous domaines, temporal problems) and application domains (e.g. configuration, temporal planning).

Romain Guillaume (UT2J): plans to develop the use of knowledge compilation techniques in planning, logistics and scheduling.

Jerome Mengin (UPS): KC map dedicated to learning problems + compilation of preferences and uncertainties.

Cedric Pralet (ONERA): on-the-fly knowledge compilation and approximate compilation (as a way to enhance the efficiency of incomplete methods); application to problems from the aerospace field.

Associate members at EMAC (KC for design and configuration) ?

KC@ANITI chair: projects

- Ph. D and Post Doc propositions:
 - KC for Incomplete Combinatorial Optimization Techniques (Ph. D)
 - Constraints Compilation for Satellite Design (Cifre)
 - From Machine Learning to Knowledge Compilation and Back (post doc)
 - Approximate Compilation for Preference and Likelihood Models (post doc)
- In link with:
 - ANR projects CAASC, PING ACK, PER4MANCE
 - Thomas Schiex's and Joo Marques-Silva's chairs (at least)
 - Beyond NP